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A modified Galerkin method previously used to approximate the solution of
nonlinear Volterra integral equations of the second kind with smooth kernels
is generalized to include such equations with singular, monotone kernels of
convolution type. Several singular kernel approximations are considered, in­
cluding positive convolution operators and integral splines. The main results
relating to the original integral equation supply error estimates resulting from
using the kernel approximations and an approximating system of ordinary
differential equations.

1. PURPOSE

Our purpose is to outline a method for approximating the solution of a
possibly nonlinear Volterra integral equation having an integrably singular
kernel. The method, which serves to generalize an approximation used
by the first author [3], uses recent results of MUller [15] and the second
author [16], [18] concerning L 1 approximations of convolution kernels.
The resultant approximation will eventually be used to generate numerical
solutions of integral equations of the form

u(x) = f(x) +r k(x - t) g(u(t» dt,
o

o~ x ~ 1; (1)

this application will, as in [3], hopefully demonstrate a significant improve­
ment in efficiency of computation while, simultaneously, supplying an
alternate way to approach the problem of solving (1) in general. In this
regard, the results here are, of course, not restricted to the numerical problem
associated with (1); since the particular approach amounts to approximating
u(x) by solving a system of ordinary differential equations, this opens the
possibility of enhanced qualitative analysis along the lines explored in [4]
for non-singular, continuous kernels.
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It is assumed that (1) has a unique solution on [0,1] and thatfe qo, 1],
g or its extension is continuous on (- 00, + (0), and k E LI[O, 1]. Our methods
further require that k be monotone; fortunately this covers a very large class
of applications. Other assumptions are stated below as required.

2. BASIC ApPROACH TO APPROXIMATING THE SOLUTION OF (1)

The basic approximation amounts to seeking a solution um(x) of (1)
in the form

m

um(x) = f(x) + L cP;(x) Yi(X),
i=O

(2)

where {cPi};'..O comprises a complete, orthonormal system for L 2[0, 1] and
{Yi};'..O is to be determined so that the error, Iu(x) - um(x)l, is small. The
functions cPi' here, will be taken as continuous functions, in fact, as seen
below, shifted Tschebycheff Polynomials of the first kind. As pointed out
below, this particular choice is motivated by the results obtained in [3]
and [5].

In general, we proceed by approximating the kernel k as follows:

m

k(x - t) = L cPi(X) 1/4t) + Em(X, t),
i~O

o~ t, x ~ 1. (3)

The desire is to choose {cPi}, {if;i}' and {Yi} in some optimum manner. The
approach here is to make small the projection

1= 0,1,... , m, (4)

where

Om(X) = um(x) - f(x) - r k(x - t) g(um(t)) dt, °~ x ~ 1; (5)

w(x) is the weight function relative to {cPi}' For large m this suggests, but
certainly does not guarantee, that om(x) might be small; if so then um(x)
is a good approximation of u(x). The point of using (4) is that it supplies
a useful way to compare choices for the test functions {cPi}, and it suggests,
as below, how the quantities {lfi} and {Yi} might be determined.

If we follow the results in [3] and [5] for smooth kernels, we are led to a
suggestion that Yi(X) should solve a certain system of differential equations
and the lfi(t) should be the Fourier coefficients,

2 IIlfi(t) = - k(x - t) r;(x) [x(1 - x)r1/2 dx;
7T 0

(6)



122 BOWNDS AND WOOD

T;* denotes the Tschebycheff polynomials mentioned above. Unfortunately,
for the current singular kernel, this neither implies that the projection (4)
is small nor, more importantly, that Iu(x) - um(x)I is small. To remedy
this, instead of using (6) in the kernel approximation (3), we propose to
"smooth" these coefficients as indicated in the following.

3. SMOOTlffiD TSCHEBYCHEFF EXPANSIONS FOR THE KERNEL

Instead of (3), with coefficients given by (6), we consider here the following
type of approximation,

m,

Tm.n(k, x, t) = L Tj(x) Tn(lfj, t),
i=O

(7)

where T;* is the jth shifted Tschebycheff polynomial of the first kind, lfj is
given by (6), Tn is one of the "smoothing" transformations described below,
and L' denotes that the first summand is halved. Before describing the
smoothing methods, Tn, we prove a lemma outlining some properties of
the kernel.

LEMMA. Assume that K(x, t) = k(x - t)for°< x - t ~ 1and k(x - t) = °
for x - t ~ 0. Ifk E L1[0, 1], then

(i) K(x,') E L1 [0, l]for each x E [0, 1],

(ii) lfj, given by (6), is an element of ~[O, 1],

(iii) if F(x, t) = f~ K(x, y) dy, °~ t, x ~ 1, then F(', t) E C[O, 1] for
each t E [0,1],

(iv) w(F(', t), S) ~ 2w(F(-, 1), S) ~ 2w(P, S), for °~ t ~ 1, where
P(x) = f~ Ik(y)1 dy, °~ x ~ 1, and w denotes the ordinary modulus of
continuity on [0, 1].

Proof (i) Let x E [0, 1]. Then

1 IX III I K(x, t)1 dt = I k(y)1 dy ~ I k(y)1 dy < 00.
o 0 0

(ii) Let t E [0, 1]. Then

2 IIlflt) = - k(x - t) r;*(x) [x(1 - x)r1/2 dx
7T 0

2 11= - k(x - t) r:(x) [x(l - x)r1/2 dx.
7T t
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Hence

11 I ,I.{ )1 d ~ ~11 J.1 I k(x - t)1 I r:(x) I dx dt
o ,/" t t """ 1T 0 t (x(I - X»1/2

2 11 11
dx~ --;; 0 I k(y)1 dy 0 (x(l _ X»1/2

= 2 f I k(y)1 dy < 00.
o

(iii) Let t E [0,1]. If 0 ~ x ~ t then

F(x, t) = It K(x, y) dy = r k(u) duo
o 0

If t < x ~ 1 then

F(x, t) = rK(x, y) dy = rk(x - y) dy = r k(u) du
o 0 x-t

and

lim F(x, t) = rk(u) du = lim F(x, t).
x~t+ 0 x-"t-

Therefore, F(', t) E qo, 1] for each t E [0, 1].

(iv) We have F(x, 0) = 0 and

123

F(x, 1) = rkey) dy,
o

Let 0 < t < 1. If 0 ~ x ~ t then

O~x~1.

F(x, t) = r key) dy = F(x, 1)
o

and, if t ~ x ~ 1,

F(x, t) = r key) dy = rkey) dy - r-t
key) dy.

x~ 0 0

Let

Wt(F,8) = w(F(', t), 8) = max IF(x, t) - F(y, t)l.
Ix-yl.;;6

""YE[O,1]

We have wo(F, 8) = 0 for all 8 > O. Let 0 < t < 1 and we shall show that
wt(F, 8) ~ 2W1(F, 8). Suppose 0 ~ y < x ~ t and x - y ~ 8. Then
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IF(x, t) - F(y, t)1 = IF(x, 1) - F(y, 1)[ ~ wl(F, 0). Suppose °~ y ~ t ~
x ~ 1 and x - y ~ o. Then

I F(x, t) - F(y, t)1

= I(r -r- t

- {) k(u) du I
o 0 0

~ 1F(x, 1) - F(y, 1)1 + IF(x - t, 1) - F(O, 1)1 ~ 2w1(F, 0),

since I x - y 1~ 0 and I x - t - °I ~ o. Finally, say t ~ Y ~ x ~ 1
and x - y ~ o. Then

1 F(x, t) - F(y, t)1

= I(r-r- t

+ r-t

- r) k(u) du I
~ IF(x, 1) - F(y, 1)1 + IF(x - t, 1) - F(y - t, 1)1 ~ 2w1(F, 0).

Therefore, wt(F, 0) ~ 2w1(F, 0) for °~ t ~ 1. Finally, wl(F, 0) ~ w(F, 0),
since

IF(x, 1) - F(y, 1)1 = Irk(u) du - rk(u) du I

~ r I k(u)I du = F(x) - F(y),
'Y

if y ~ x. This completes the proof of the Lemma.
Our current aim is to examine certain smoothing transformations TnClflj , t)

for use in (7). The connection between the resulting approximations and the
original integral equation is finally made in Theorem 5 below.

1. Positive Convolution Operators

Let Hn(y) be a continuous, nonnegative function on [-r, r], r > 0,
such that

(i) f~r Hn(y) dy = 1, n = 1,2,... , and

(ii) r ry2Hn(y) dy = fLn2~ 0, as n ~ 00.

ForIE Lp[O, r], 1 ~p < 00, let

Tn(f, x) = flU) HnU - x) dt,
o

°~ x ~ r. (8)

Here Lp[O, r] denotes the space ofmeasurab1e,pth power Lebesgue integrable
functions on 1= [0, r]. Notice that Tn(f, x) is a continuous function of x
for x E [0, r].
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THEOREM 1 [16], [18]. Let fELiI), 1 ~p < 00. For all n sufficiently
large we have

II T..(f) - fll2> ~ M2>[JL~f(22)+1)llfll2> + W2>(f, JL~(22)+1))],

where II ·112> is the L2>-norm on I, M2> is a positive constant independent off, and

W2>(f, h) = sup Ilf(· + t) - fOb l ) ,

O<t(;h

where It indicates that the L2>-norm is taken over the interval It = [0, r - t].
Of course, w2> is just the usual integral modulus of continuity (see [10], [17]).

There are two important classes of positive convolution operators (8).
Let cp(y) be a continuous, nonnegative even function on [-r, r], decreasing

on 1= [0, r] and such that cp(O) = I and 0 ~ cp(t) < 1 for 0 < t ~ r.
For f E L2>(I), 1 ~ p < 00, let

where

T..(f, x) = P..rf(t) cp..(t - x) dt, o~x ~ r, (9)

n = 1,2,...

Operators (8), for continuous f, were first studied by P. P. Korovkin [11,
p. 20], who showed that, for fE qo, r],

lim T..(f, x) = f(x)
"->00

uniformly on every interval [8, r - 8], 0 < 8 < r/2. Bojanic and Shisha [2}
obtained the following result: if

lim 1 - cp(t) = C

t->o+ t ex

for some positive numbers <X and c, then

JL..2 = 0(n-2/ ex).

Many important special cases of (9) were cited in [2]. In particular, if
cp(t) = e-1tl and 0 < r < 00 then IL..2 = 0(n-2). An asymptotic result for (9)
was obtained in [9].

Let {p..} be a sequence of orthogonal polynomials on [-1,1] whose
weight function w is nonnegative, even and Lebesgue integrable on [-1, 11
and has the following properties:

(i) O<m~w(x)forxE[-r,r],O<r~l;

(ii) w(x) ~ M for x E [-8, 8],0 < 8 ~ 1.
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Denote the zeros of P2n in their increasing order by:

-1 < X-n.2n < X-n+1,2n < ... < X-1•2n < X1,2n < ... < x n•2n .

Since w is even, the zeros of P2n are symmetrically distributed in [-1, 1].
Conditions (i) and (ii) imply that w is bounded away from °and 00 in some
neighborhood of 0. For example, if w(x) = (1 - X2)-1/2, X E (-1, 1), the
corresponding orthogonal polynomials are then the first kind Tschebycheff
polynomials, Tn, while if w(x) = (1 - X 2)1/2 we obtain the second kind
Tschebycheff polynomials, Un' Also, for w(x) = 1, x E [-1,1], we have
the Legendre polynomials.

Let {Rn} be either one of the following two sequences of polynomials:

where CX2n = X1,2n in the smallest positive zero of P2n and CX2n+1 = x1,2n+l

is the smallest positive zero of P2n +l . Also, en is chosen so that

r Rix) dx = 1,
-r

For fE Lp[O, r], 1 :(; p < 00, let

n = 1,2'00'

Tn(f, x) = f f(t) Rn(t - x) dt,
o

°:(; x :(; r. (10)

o:(;x:(;l.

Operator (10) is a modification of optimal operators of Bojanic [1] and
DeVore [8, Chapter 6], which were used to approximate continuous func­
tions. Notice that Tn(f, x) is a polynomial in x. These authors have shown
that P-n2 = O(n-2

).

In the sequel we let K, k satisfy the hypotheses of the Lemma, as well as
the following:

(i) k(y) is monotone (nondecreasing or nonincreasing) on (0, 1) and

(ii) 1im5-+o+ In 8w(F, 8) = 0, where

F(x) = r I k(Y)1 dy,

Examples of such kernels are:

(1) K(x, t) = !~~ - t)1/2,

_ \(x - t)-1/2,
(2) K(x, t) - 10,

O<x-t:(;l,
x - t :(; 0,

O<x-t:(;l,
x - t :(; 0,
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and

(3) K(x, t) = 1~~(X - t), °< x - t ~ 1,
x - t ~ 0,

o~ t ~ 1,

Let T:(x) denote the vth shifted Tschebycheff polynomial and let

.1. ( ) = ~ Jl K(x, t) T:(x) dx
'/'v t 7T 0 (x(l _ X))1/2 '

be the vth Fourier-Tschebycheff coefficient of K(', t) (recall (6)).
For m = 0,1,2,3,... , n = 1,2,3,... and 0 ~ t, x ~ 1, define

m,
Tm.n(K, x, t) = ~ T:(x) Tn(o/v , 0,

v=o
(11)

where L' indicates that the first term is multiplied by 1/2 and Tn is defined
by (8) with r = 1. Notice that, since O/V E L 1 [0, 1], we have that Tn(o/v, t) is a
continuous function of t for °~ t ~ 1.

We can now establish a result concerning the approximation of K(x, t) =
k(x - t) by (11).

THEOREM 2. Let E > 0 be given. Then we can choose n = n(E) and
m = m(n, E) so large that

sup t !K(x, t) - Tm.n(K, x, O! dt < E.
0';;",';;1 0

Proof Fix x in [0, 1]. Since K(x, .) E L 1 [0, 1],

Tn(K, x, t) == t K(x, y) Hiy - t) dy
o

is a continuous function of t for °~ t ~ 1. Write

r ! K(x, t) - Tm.n(K, x, O! dt ~ II I K(x, t) - Tn(K, x, t)[ dt
o 0

+ t I Tn(K, x, t) - Tm.n(K, x, O! dt.
o

It follows from Theorem 1 that, for all n sufficiently large,

t I K(x, t) - Tn(K, x, t)1 dt
o

~ M [p.~/3 ( I K(x, Y)I dy + w1(K(x, '), p.~/~],
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where M is a positive constant, independent of K(x, .) and n, and WI denotes
the integral modulus of continuity of K(x, -). Now, for 0 ~ x ~ 1,

rIK(x, y)1 dy = r Ik(u) I du ~rI k(u) I du < 00.
o 0 0

Next we examine wl(K(x, '), h) for 0 < h < t. Assume 0 ~ x ~ t ~ h.
Then

r-t
IK(x, u + t) - K(x, u)1 du ~ r-t

IK(x, u + t)1 dt
o 0

+ f1

-

t
[ K(x, u)[ du ~r[k(x - u)[ du ~ F(h).

o 0

Assume 0 < t ~ x ~ h. Then

f
1

-

t
IK(x, u + t) - K(x, u)1 du ~ r-t

Ik(x - u - t)1 du
o 0

+ f'" Ik(x - u)1 du = r-t
[ k(y)1 dy + r I k(y)1 dy ~ 2F(h).

o 0 0

Assume h ~ x ~ 1 and key) is monotone nonincreasing on (0, 1) (proof
similar if key) is monotone nondecreasing on (0, 1». For 0 < t ~ h,

f
1

-
t

I K(x, u + t) - K(x, u)1 du = r-t
I k(x - t - u) - k(x - u)1 du

o 0

+ J.,~t I k(x - u)1 du

= r-t
(k(x - t - u) - k(x - u» du + J.,~t I k(x - u)1 du

f'" f"'-t I'"= k(x - u) du - k(x - u) du + I k(x - u)1 du
t 0 ",-t

~ 2r I k(x - u)1 du +rIk(x - u)1 du
",-t 0

= 2 f I k(y)l dy + J.,~t I k(y)1 dy

~ 2 ( I k(y)1 dy + I.,~h Ik(y)1 dy

= 2F(h) +F(x) - F(x - h).
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Hence, if 0 < h < ! ,

sup wl(K(x, '), h) ~ 2F(h) + sup IF(x) - F(x - h)l.
O~x~1 h~x~1

129

Since FE qo, 1] and F(O) = 0, given e > 0 we can choose 0 < ho(e) < t
such that 0 < h ~ ho implies

2F(h) + sup IF(x) - F(x - h)1 < e.
h~X~1

By assumption, limn -+oo fJ-n = 0 and hence we can choose N = N(e) such
that n ~ N implies

It now follows that, given e > 0, we can choose n = nee) so large that

I
I e

sup I K(x, t) - Tn(K, x, t)1 dt < 2"'
O~X~1 0

Of course, n also depends on the kernel K.
Let n be determined as above and fixed. Consider, for m = 1,2, 3,... ,

r[Tn(K, x, t) - Tm.n(K, x, t)1 dt
o

IIIII m,= 0 0 K(x, u) Hn(u - t) du - to T:(x) Tn(if1" , t)[ dt.

Let

.. 1
Gn(x, t) = Tn(K, x, t) = J K(x, u) Hn(u - t) du

o

= r k(x - u) Hn(u - t) du = r-t
k(x - y - t) Hn(y) dy.

o -t

Without loss of generality, assume t E [0,1], 0 ~ Z < x ~ 1 and key) is
monotone nonincreasing on (0, 1) (similar proof if key) is monotone non­
decreasing). Since H n( y) ~ 0 for -1 ~ y ~ 1,

I Gn(x, t) - Gn(z, t)1 ~ Ir- t

HnCy) k(x - y - t) dy

-r:t

Hn(y) k(z - y - t) dy I
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= I(-t Hn(y) (k(x - Y - t) - k(z - y - t)) dy

+ i~~t Hn(y) k(x - y - t) dy I

~ (-t Hn(y) I k(x - y - 1 - k(z - y - 1)1 dy

+ i~~t Hn(y) I k(x - y - t)! dy

~ Pn !(-t (k(z - y - t) - k(x - y - t)) dy

+ i~~t I k(x - y - t)1 dyl

= Pn If k(u) du - L~z k(u) du + r-z

I k(u) I dul

~ Pn !f I k(u) I du + 2 ('-Z I k(u)I dul

= PnfF(x) - F(z) + 2F(x - z)},

Pn = max HnCy)·
-1(;1/(;1

It follows that, for 0 > °and °~ t ~ 1,

w(GnC I), 0) = sup I GnCx, I) - Gn(z, 1)1 ~ 3pnw(F, 0)
1",-z 1(;8

and GnC t) E qo, 1]. Also, for °~ 1 ~ 1, v = 0, 1,.. "

~11
Gn(y, t) T:(y) dy = T (.1. )

7r 0 (y(l - y))1/2 n 't'v , t ,

i.e., TnC!fv, t) is the vth Fourier-Tschebycheff coefficient of GnC', I). Since
Gn(', I) E qo, 1],

~ A ' In m . w(GnL t), m-1),
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where A is a positive constant, independent of m and GnC t) [6, p. 149].
Therefore,

sup r I Tn(K, x, t) - Tm.n(K, x, t)1 dt
0(,,(1 0

I
I m,

= sup I Gn(x, t) - L T:(x) Tn(rf;v, t)1 dt
0(,,(1 0 v~O

~ 3Apn In mw (F, ~).

By hypothesis, In mw(F, Ijm) < ej6pnA for m = men, e) sufficiently large.
This completes the proof of Theorem 2.

II. Integral Splines

Let Lin: °= Xo < Xl < ... < Xn = 1 be a finite partition of the interval
1= [0, 1]. This partition is extended to a sequence Ll n.s = {xi}f~~s of so­
called knots by setting X_s = ... = X-I = °and Xn+1 = ... = Xn+S = 1.
Define the nodes

-s~.i ~ n - 1 (12)

Clearly, 0 = Ls,s < Ls+1.s < ... < 'n-1.s = 1 and

r. _ r. = XHs+1 - XH1
\'3+1.s \'3,S S •

Let

M(x' t) = (s + 1)(t _ x)S = I(S + 1)(t - X)8,
, + ~ t<x

t~x

and Mijx) be the (s + l)th divided difference of M(x; t) in t on Xi ,... , XHS+1
for fixed X, i,e., Mijx) = M(x; Xi ,... , XHs+1)' These are the B-splines of
Curry and Schoenberg [7]. The normalized B-splines or fundamental
functions, Ni,s(x), are given by

N () (XHS+1 - Xi) M ()i,8 X = S + 1 i,s X . (13)

Marsden and Schoenberg [12], [13] used the so-called variation-diminishing
spline

n-1
Sn,sCr, x) = L fai.s) Ni,s(x)

j=-8
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to approximate continuous functions on 0 ~ x ~ 1. It is a spline of degree s
with knots Xi and very explicit formulae for the nodes (12) and fundamental
functions (13), in case the knots are equally spaced, may be found in [13].

IffE LiI), I ~p < 00, let F(x) = f~f(t) dt for 0 ~ x ~ I and write

(14)

where D", denotes differentiation with respect to x. This is also a spline of
degree s, called the integral spline. It can be shown [12], [15] that

where the 'i,S+!' -s - I ~ i ~ n - 1, are given by (12) with s replaced
by s + 1. The spline operator T"s is linear positive and can be given by the
singular integral

T"S(f, x) = rH",s(x, t)f(t) dt
o

with the positive kernel

"-1

H",.(x, t) = L Ms.;(x) li-l.sH(t),
j=-8

(16)

(17)

where li-I.S+! is the characteristic function of the interval ['i-I.S+!' 'i,s+!]
with respect to I [15].

TIffiOREM 3 [15]. Iff E Lp(I), 1 ~ p < 00, then

where II '1121 denotes the usual L 2I-norm on I, M is a positive constant, inde­
pendent off and p, Wi> is the integral modulus of continuity on I and ILI" I is
the norm of the partition .::I" of1.

Let K(x, t) be the kernel of our integral equation, assume K satisfies all
the hypotheses of Theorem 2 (recall the Lemma) and let

F(x, t) = f K(x, y) dy,
o

For each x E [0, I], set

o~ t, x ~ 1.
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Since K(x, .) E L 1[0, 1], TiK, x, t) is a spline function for 0 « t « 1 and

TnS(K, x, t) = nf (. N~s(t~ ) (i,HI K(x, y) dy
i--s ". +1 ',-1.S+1 'i-l,8+1

n-l
= L Mi,s(t) [F(x, 'i.s+!) - F(x, 'i-l.8+1)]'

j=-s

For 0 « t « 1 define

()_~ II F(x, t) T:(x) dx
ex" t - 7T 0 (x(1 _ X»1/2

to be the vth Fourier-Tschebycheff coefficient of F(', t). Since

,f. () = ~ II K(x, t) T:(x) dx
'/'" t 7T 0 (x(I _ X»1/2

is in L 1 [0, 1], it is easy to see that

O«t«I,

and

n-l
= L Mi,s(t) [ex"ai.s+1) - ex"ai-1.s+1)]·

i--s

Hence, for m = 0, 1,2,... , n = 1,2,3,... and 0 « t, x « 1,

m,

= L T:(x) Tn
S(if1" , t),

,,=0
(18)

which is the desired form for our approximation to K(x, t). (Compare (11)
and (18).) Notice that since if1" E L1[0, 1], TnS(if1" , t) is a spline function and
hence is continuous for 0 « t « 1.

THEOREM 4. Let e > 0 be given, s be a positive integer, and ILIn I~ 0
as n ~ 00. Then we can choose n = n(e) and m = m(n, e) so large that

sup r I K(x, t) - T:".n(K, x, t)1 dt < e.
O<x<1 0
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Proof Fix x in [0, 1]. As in the proof of Theorem 2,

I
I I

I K(x, t) - T:",nCK, x, t)1 dt ~ f I K(x, t) - T~ (K, x, t)1 dt
o 0

+ rI TnS(K, x, t) - T!;",n(K, x, t)j dt
o

and, since I .::::In I -+ 0 as n -+ 00, using Theorem 3 we can show (as in proof
of Theorem 2) that

sup r I K(x, t) - TnS(K, x, t)1 dt < e/2
O~x:(l 0

if n = n(€) is sufficiently large.
Let n be so determined and fixed. Since Mj..(t) :? 0 for 0 ~ t ~ 1,

r I TnS(K, x, t) - T!;",n(K, x, t)1 dt
o

~ j~S ( Mj,sCt) dt II F(x, 'j.8+1) - ~~ T:(x) CXv('i,S+I) I

+ IF(x, 'j-I.s+I) - ~: T:(x) CXVaj-I.S+I) I!·
By the Lemma, F(', t) E C[O, 1] and w(F(', t), 8) ~ 2w(F(-, 1), 8) ~ 2w(F, 8)
for 0 ~ t ~ 1. Hence

max \ F(x, t) - f' r:(x)cxv(t) I:'( A In mw (F(" t),~) ~ 2A In mw (F, ~),
0';;;"'';;;1 v~o m m

where A > 0 is an absolute constant. Since

rMj,sCt) dt = 1, j = -S, ... , n - 1,
o

it follows that

sup (I TnS(K, x, t) - T!;".n<K, x, t)1 dt :'( (n + s) 4A In mw (f, _1_).
0';;;",(:1.0 m

Therefore, given e > 0 and n, we can choose m = men, e) so large that

In mw (f, m
1

) < -=--:e----;"'~
8(n + k)A

and Theorem 4 is proved.
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Remark 1. Orthogonal sequences other than the shifted Tschebycheff
polynomials, T:, can be used to construct the approximations (11) and (18).
We simply need to use the appropriate theorem regarding convergence of
the resulting Fourier series of Gi·, t) (in Theorem 2) and FC t) (in
Theorem 4).

Remark 2. The Galerkin approximation used in [3] for continuous
kernels, K, may be given by

m,

Gm(K, x, t) = L <T:, T:>-1/2 T:(x) lfIlt).
V~O

If fLly) denotes the Dirac measure with mass at y = t E [0, 1], and Tn,
Tn' denote the smoothing transformations of (11), (18), respectively, then
we can write (recall (8), (16) and (17))

and, replacing ordinary Lebesgue measure dy with the appropriate Dirac
measure dfLt(Y), we obtain

O~t~1.

Here lfIv denotes the vth coefficient associated with the normalized Tscheby­
cheff sequence. This suggests how our singular methods can be reduced to
those of [3] in case k is continuous. In a future paper the authors will compare
numerical results for smoothing versus no smoothing when the kernel,
k(x - t), is continuous.

4. MAXIMUM ERROR IN APPROXIMATE SOLUTION AND PROJECTION

The utility of approximating the solution of (1) via any of the above
smoothed Tschebycheff expansions evidently depends on an apriori error
estimate for such an approximation. Also, in keeping with the program
of using the projection <on, c/>!> to compare results with those obtained
by using other possible test functions, an estimate for this inner product is
useful.

We first establish that the above approximations produce global bounded,
approximate solutions of the associated integral equations.

We remark that the basic smoothing approximations in Section 3 do not
use normalized test functions; the actual use of these approximations here
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will involve normalization and we simply note that the kernel approxi­
mation in any of the above cases trivially can be written as

m, m,
Tm.n(k, x, t) = L T:(x) Tn(if;v, t) = L epv(x) Tn(lJIv , t)

v~o v~o

where the functions

v = 0,1,2,... ,

are normalized in L 2[0, 1], and

v = 0,1,2,...

Hence the estimates involved in the previous section are the same.

Remark. Here we are using Tm.n(k, x, t), instead of T:n.ik, x, t), to denote
(18) in order to simplify the above statement. This convention will be adopted
in the sequel. We shall also write TiJ, t) for both (8) and (14).

LEMMA. Assuming that (1) has a unique, continuous solution u(x) on [0, 1],
let f E qo, 1], k E L1[0, 1] and g E C(- 00, + 00). Suppose g satisfies the
Lipschitz condition,

for minO";;",";;1 u(x) - 1 ~ ZI, Z2 ~ maxO";;",";;1 u(x) + 1. Let Tm.n(k, x, t) be
given by either (11) (positive convolution operator) or (18) (integral spline).
Then the approximating integral equation,

w(x) = f(x) +r Tm.n(k, x, t) g(w(t)) dt,
o

(19)

has, in each respective case, a unique continuous solution um.n(x) on [0, ,$],
for sufficiently small f3.

Proof If Tm,n(k, x, t) is given by (11), then (19) becomes

w(x) = f(x)

+r f ,$vT:(x) Pn f epn(s - t),$;1 aves) ds g(w(t)) dt,
t-o v=O 0
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where f3'O = <T:, T:>-lj2. Since, for any w satisfying I w(t)/ :(; B, 0 :(; t :(; I,
it follows that

IE" ~~ f3'O T:(x) Pn f 1>n(s - t)fJ;;l cx'O(s) ds g(w(t) dt I

:(; f Pn r 1 cxis) 1r 1>n(s - t)1 g(w(t» I dt ds
'0=0 8=0 t=o

m'Jl II:(; G L I cx'O(s)I ds pn 1>n(z) dz :(; C (constant)
'o~0 8=0 0

(20)

where G = maXo<t<l Ig(w(t»I, it then follows from a standard local existence
result [14] that (19) has a unique, continuous solution um.n(x) on [0, f3] for
sufficiently small f3.

If Tm.n(k, x, t) is given by (18), then (19) becomes

w(x) =f(x)

a; m, n-l tj.8+1

+ i L f3'O T:(x) L Mj,s(t) f f3;l cx'O(z) dz g(w(t» dt,
t=o '0=0 j~-8 l'i-1,'+1

where s, nand Mj.lt) are as in Section 3. Using basic properties of B-splines,
we easily obtain an inequality of the same type as (20), and an appeal to
the same local existence theorem supplies the result, albeit for possibly a
different f3.

The following establishes the uniform convergence of um.n(x) to u(x) and
supplies an estimate for <8m.n , 1>z>. (Recall (5) with Um replaced by um.n .)

THEOREM 5. Assume the conditions of the preceeding Lemma and further
assume k satisfies all the hypotheses of Theorems 2 and 4. Then

(i) Given E > 0, there exist sufficiently large m and n such that um.n(x)
exists on [0, I] and

II u - Um.n 110 = sup 1 u(x) - Um.n(x)1 :(; E.
0<"'<1

(ii) If the approximate solution um.n<x) satisfies

m

um.n<x) = f(x) + L 1>j(x) Yj.n(x),
j-O

O:(;x:(;l, (21)
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where Yo.n ,Yl,n ,... , Ym.n satisfy the differential system,

m

Y;.n(x) = TnCP; , x) g(f(x) + I c/>b) Yt.n(X», 0 < x :::;; 1,
1=0

and

Y;.n(O) = 0, j = 0, 1,2,... , m, (22)

j = 0,1,..., m (23)

with Tn(if1;, x) defined by (8) or (14), then the inner product <Dm.n , <Pt), with
Dm.n as in (5) and <PI = <Tt, Tt>-1/2 Tt, satisfies the inequality

(24)

for sufficiently large m, n, where

G = max.{( g(z)(: min u(x) - 1 :::;; z :::;; max u(x) + I},
O<x<1 O<x<1

CPt = maxO<x<1 I <pt(x)f, w(x) is the weight function associated with the
orthonomal set {<p;}, and

€m.n = sup (1 I k(x, t) - Tm.n(k, x, t)1 dt,
O<x<l Jo

with Tm .n given by either (11) or (18).

Proof (i) Fix E, 0 < E < 1. Let R(x - t) be the resolvent kernel
associated with Ik(x - t)1 for 0:::;; t :::;; x :::;; 1. Let L be the Lipschitz
constant in the Lemma and let G = max.{1 g(z) I: mino<x<l u(x) - 1 :( z :(
maxO<x<l u(x) + I}. Choose, by Theorems 2 and 4, mo, no so large that

:( EG-l(1 + L sup r R(x - t) dt)-l.
O<x<1 0

(25)

From (14, Chapter 4] it follows that this second sup is finite, since k is of
convolution type and an element of Li[O, 1].

Now, since u(O) = umo'no(O), there exists a fJ, 0 < fJ :::;; 1, such that Umo'no(x)
exists and I u(x) - umo'no(x)! < I on [0, fJ]. If there exists fJ' with fJ < fJ' :( 1
so that umo'no(X) exists on [0, fJ') but not on [0, fJ'J then umo'no(x) is unbounded
on [0, fJ'); see [14, Chapter 2]. In such a case there exists {3", with 0 < fJlt < fJ',
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such that IU(x) - Umo'no(x) I < 1 on [0, f3") and I u(j3") - Umo'no(,B") I = 1.
This implies that on [0, ,8"],

oX

+ L J
o

I k(x - t)1 I u(t) - Umo.no(t)I dt,

from which it follows from a basic comparison lemma such as in [14,
Chapter 2] that

~ G . Emo •no (1 + L sup r R(x - t) dt), (26)
0';;",';;1 0

where R is the above resolvent. Because of (25) this then implies that
Iu(x) - Umo'no(X) I ~ E < 1 on [0, ,8"], contradicting the choice of ,B".
It follows that umo'no(x) exists on the entire interval [0, 1] and Iu(x) ­
Umo'no(x) I ~ 1. A return to the same inequality, namely (26), for °~ x ~ 1,
implies that

(ii) Assuming that um.n(x) is as in the theorem, we have

<Sm.n, <pz) = I.,~o (f(X) + ~o <Pv(x) Yv.ix) - f(x)

-rk(x - t) g(um.n(t» dt) <Pz(x) w(x) dx

which, using the relations k(x - t) = Tm.n(k, x, t) + Em.ix, t), Tm.ik, x, t) =
1::'0 <Pv(x) Tn('l'v , t) is easily shown to be the same as

-rTitpv , t) g(um.n(t» dt) <Pz(x) w(x) dx

- I.,~o (0 (k(x-t)-Tm.n(k, x, t») g(um.n(t» <pz(x) w(x) dt dx.
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Now, using the indicated choice for Yv.nCx), the first integral on the right­
hand side is zero, and an estimate on the second integral is

I{~o i:o (k(x - t) - Tm.n(k, x, t)) g(um.n(t)) (f>t(x) w(x) dx I

='( G . fIJI {~o (0 Ik(x - t) - Tm.n(k, x, t)1 dt w(x) dx

='( G . fIJI • Ern •n ( w(x) dx,

where fIJI, G, and Em •n are as indicated in the statement; this completes
the proof.
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